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ABSTRACT

This two-part report is concerned with the development of a general framework

for the implicit time-stepping integrators for the flow and evolution equations in

generalized viscoplastic models. The primary goal is to present a complete theoretical

formulation, and to address in detail the algorithmic and numerical analysis aspects

involved in its finite element implementation, as well as to critically assess the numerical

performance of the developed schemes in a comprehensive set of test cases. On the

theoretical side, the general framework is developed on the basis of the unconditionally-

stable, backward-Euler difference scheme as a starting point. Its mathematical structure is

of sufficient generality to allow a unified treatment of different classes of viscoplastic
models with internal variables. In particular, two specific models of this type, which are

representatives of the present state-of-art in metal viscoplasticity, are considered in
applications reported here; i.e., fully associative (GVIPS) and non-associative (NAV)
models. The matrix forms developed for both these models are directly applicable for both

initially isotropic and anisotropic materials, in general (three-dimensional) situations as
well as subspace applications (i.e., plane stress/strain, axisymmetric, generalized plane

stress in shells). On the computational side, issues related to efficiency and robustness are

emphasized in developing the (local) iterative algorithm. In particular, closed-form

expressions for residual vectors and (consistent) material tangent stiffness arrays are given

explicitly for both GVIPS and NAV models, with their maximum sizes "optimized" to
depend only on the number of independent stress components (but independent of the
number of viscoplastic internal state parameters). Significant robustness of the local

iterative solution is provided by complementing the basic Newton-Raphson scheme with a

line-search strategy for convergence. In the present first part of the report, we focus on
the theoretical developments, and discussions of the results of numerical-performance

studies using the integration schemes for GVIPS and NAV models.





Robust Integration Schemes for Generalized Viscoplasticity
with Internal-State Variables; Part I Theoretical

Developments and Applications

1. Introduction and Literature Review

Dealing with the general topic of computational inelasticity, the scope of the

work in this report is focused on the development of algorithms for the integration of rate

dependent constitutive equations. In recent years, this subject has attracted considerable

attention and will form the basis for the present work. In particular, recent literature has

dearly emphasized the use of implicit integration schemes in view of their robustness; i.e.,

their superior stability and convergence properties for viscoplasticity, as well as for the

limiting case of inviscid plasticity.

In regards to the rate dependent constitutive models, a number of viscoplastic models

were developed to represent the material behavior of metals and composites, etc. All

viscoplastic models can be elassitied into two classes, the first is the fully associative

viscoplastic model, or GVIPS ( Generalized Viseoplastic with Potential Structure ), the second

is the NAV ( Non-associative Viscoplastic models ). GVIPS possess both the thermodynamic

potential ( Gibb's function ) and the dissipation function ( f_ form ), while NAV generally refer

to those models that have partially (e.g., _ form only) or totally incomplete potential form. In

these latter NAV models, thermodynamics requirements are simply reduced to the fundamental

dissipation inequality only. For these two different classes of models, a general computational

framework suitable for implementation of both is needed, and this constitutives the major part

in the developments reported here.

1.1 Integration Schemes

Computational algorithrns for the integration of constitutive relations play a central role

in the inelastic finite element analysis of engineering structures. For example, because of their
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simplicity, the classical yon _ (or Jz-type) theories of inviscid plasticity [28], and

generalizations for its timo-dependent viscoplastic coumeq_ [37, 58] are extensively utilized

for isoa'opic metals. Correspondingly, a major research effort has been devoted over the years

to the development and critical assessment of stress updating or integration scheanes for the

rate equations in these material models [2, 8, 12-14, 16, 22, 29, 31, 33-35, 40, 42, 44-45, 48-

49, 52, 54, 57, 63, 67-70, 74, 76-78, 80]. As a result, several powerful techniques are

currently available; e.g. refer to the extensive reviews and evaluations in [51, 64] for plasticity

and [2, 30, 35, 65, 78] for viscoplasticity.

In particular, note that, in early applications the explicit integration schemes (i.e.,

forward Euler method) were predominate because of their ease in implementation, and

because they do not require evaluating and inverting a Jacobian matrix. However, explicit

integrators may not be efficient. That is, too many iteration steps may be required and

convergence stability can not be guaranteed [49, 54, 80]. More recent work has dearly

emp_ the use of implicit integration methods [12-14, 22, 29, 31, 33, 40, 42, 45, 48, 52,

57, 63, 65, 68-69, 74, 76-77] in view of their superior stability and convergence properties [30,

51]. Several alternative approaches have been used in the derivation and subsequent mat_

matical analyses of these latter methods (collectively known as return mapping algorithms in

recent computational-plasticity literature). For instance, these include convex analysis tech-

niques for variational inequalities of plasticity [23, 32, 46, 50], mathematical progranmfing or

holonomic methods for incrementally external paths [11, 18, 41, 43], the "substructure"

analogy [59], asymptotic expansions for integral-equations in viscoplasticity [17, 25, 75], as

well as the more conventional finite differencing schemes [26] and their generalizations; i.e., in

the form of semi-implicit or forward gradient approach [e.g. 2, 57, 78], and also implicit

trapezoidal or midpoint rules [30, 51, 64]. Walker's asymptotic integration scheme is of

more recent origin, and exhibits a number of unique advantages which are marked

improvement in accuracy and stability over existing integration algorithms for the case of

isotropic materials subjected to uniaxial loads [17, 75]. In these references, the asymptotic

integrator is described for dissipative linear two dimensional systems of ordinary
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differential equations, and is shown to yield the exact solution for a one dimensional linear

equation. However, recent work shows that for higher dimensional systems of nonlinear

equations, such as Freed's viscoplastic model, accuracy and stability cannot be guaranteed

in general [27]. From the standpoint of practical applications, the one-step, fully implicit,

backward Euler scheme is presently one of the most widely used integrators [14, 29-31, 33, 40,

48, 51-52, 63-64, 68-69, 76-77]. For the computationally intensive viscoplastic applications,

found in typical finite element analysis, implicit backward Euler integration methods have

become the proven standard for the numerical integration of the viscoplastic rate

equations [27, 65].

1.2 Viscoplastic Models

During the past decade, much progress has been made in the development of

viscoplastic constitutive equations. Several viscoplastic models have been proposed and

developed to treat the complex time dependent viscoplastic behavior of metals, alloys and

composites at high temperature [ 15, 24, 60, 62]. The deformation behavior of materials at

high temperature involves energy dissipation and material stiffness variations due to

physical changes in the material's microstructure. Consequently, thermodynamic

arguments have o_en been utilized as a foundation on which phenomenological

constitutive laws may be formulated. The general form for a fully-associative potential-

based viscoplastic formulation in terms of the Gibb's thermodynamic potential has been

put forth in [3-5]. The complete potential-based class of inelastic constitutive models

exhibit a number of unique advantages fi'om both a theoretical and a computational

standpoint, for example, the symmetry of the resulting consistent tangent stiffness matrix,

and possesses a form which is convenient for further development of new deformation and

damage models. These advantages serve to motivate further development and use of this

class of models.
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Another class of constitutive models are those that are nonassociative and are

currently used by industry, e.g., the unified viscoplastic theory of Kobinson and Duffy

[60,62] for metal matrix composites at high tempemt_e, together with its extension for

coupled creep-damage analysis in [61]; and Freed's viscoplastic model with creep and

plasticity bounds to analyze the response of polycrystalline metals at high temperature

[24]. Recent work has demonstrated that the above models may be modified to restore

the complete potential structure. With regards to the computational algorithms, research

work for the more complex constitutive theories is still needed. In this regard, the study of

the important issues involved in such an undertaking constitutes our main objective in the

present report.

2. Scope, Objectives and Contribution

2.1 Scope

From the standpoint of practical applications of interest (i.e., large-scale numerical

simulations), and in view of the above discussion, the focus of the present work is on the

stress updating schemes of the one-step, fully implicit, backward Euler difference scheme.

This is the simplest in its class, and is certainly the most widely used at present. Based on

recent experience and results, this scheme was found to be efficient and stable when

effectively utilized in a class of isotropic and anisotropic coupled viscoplastio-damage

models.

With regards to the constitutive models employed, two general classes of unified

viscoplastic theories are considered:

(a) The nonassociadve models ( NAV )
Co) The fully associative, or complete potential-based, models ( GVIPS )



Both of these models are sufficiently general for the anticipated applications; i.e.,

incorporating such important response characteristics as nonlinear (isotropic and/or

kinematic) hardening, various recovery mechanisms, etc., and both are amenable to

extensions for nonisothermal conditions, as well as anisotropy (i.e., generalized J2 format).

The majority ofviscoplasticity models currently in use (at NASA and elsewhere) belong to

class (a). Several developments in class (b) are currently underway as these models are

very appealing in view of their theoretically sound basis from the thermodynamics

standpoint, and the symmetries exhibited in the corresponding integrated forms of their

flow and evolution equations. This report will discuss the present implementation which

has been developed in terms of a framework which is applicable to both GVIPS and

nonassociative models to show the robustness of the backward Euler integration

algorithm. As an example of a nonassociative model, Freed's model [24] was chosen for

implementation into the proposed integration algorithm. For the generalized form of

GVIPS, the decoupled potential framework is assumed and the specific GVIPS model is

put forth.

For conciseness, the discussion is limited to a case involving small deformations (

in which the initial state is assumed to be stress free throughout ), an initially isotropic

material, and isothermal conditions. Note that the implementation framework is also valid

for an anisotropic material.

2.2 ObJectives

For each of the viscoplastic models considered, and the associated implicit

backward Euler integration method, the following tasks are to be completed:

(I) Detailed study of the underlying mathematical structure of the viscoplastic equations,
and the corresponding integrated fields of stress and internal state variables.

(2) Development and implementation of the stress-updating algorithm, and associated

line search and subincrementing schemes.



(3) Testing of the convergence, stability, and accuracy properties of the algorithms.

(4) Documentation of results, guidelines, and recommendations for effective utilization
of the schemes developed.

Our primary objective in item (1) is to identify the pertinent matrix operators

needed in the algorithmic development; i.e., concise forms of the integrated field

equations, and convergence limits for the subincrementing control strategy in item (2).

The implementation in item (2) will encompass several nonlinear solution procedures; i.e.,

both the initial (constant) and tangent (variable) stiffness formats. The latter utilizes

appropriate forms of the consistently-derived material tangent stiffness; i.e.,

modelfmtegrator-dependent.

The implementation and coding in (2) will be written in a "modular", "stand-

alone", format with full documentation of the associated material-model subroutines. This

will facilitate a straightforward utilization of the developed algorithms in other nonlinear

finite element analysis codes.

In conjunction with (3), an extensive number of discriminating test problems will

be u_. The objective is to enable firm conclusions to be made regarding the "relative"

merits and/or limitations of various schemes.

2.3 Contribution

Based on the present work, some achievements are summarized as follows:

(1) Original equations of Freed's model are recast into the matrix format described in [65]
to facilitate the model's implementation into the newly developed flame-work

discussed in Pm II [38] of this work.

(2) Freed's nonassociative model is implemented successfully in finite element analysis

for the generalized plane stress case.

(3) The algorithm described in the report is proven to be accurate and efficient.

Convergence and stability are guaranteed.



(4) Line search technique is used successfully to achieve robustness of the integration

scheme.

3. Mathematical Formulations of Viscoplastic Models

3.1 Introduction

In this section, mathematical formulations of the complete potential-based

viscoplastic structure is discussed. Based on recent work [3, 5], the general form for

GVIPS should have two key ingredients; 1). the thermodynamic potential, or Gibb's

function ( or conjugate free energy, Helmholtz function ) defining the equations of state,

and 2). the viscoplastic dissipation function ( fl form ) for the ensuing flow and evolution

laws of inelastic strain and internal state parameters. The previous forms typically

employed by many researchers [60, 62, 24] in discussing the general structure of the

"thermodynamically based" constitutive equations are .O-form ( flow or dissipation

potential ). These forms are introduced solely for convenience in satisfying the

thermodynamic admissibility restriction of the engineering materials based on simple

properties of non-negativeness and convexity of these functions. From a strict

mathematical standpoint, the "thermodynamic-admissibility" restriction associated with the

dissipative mechanisms reduce to the well-known Clausius-Duhem or dissipative

inequality (O-form) [19, 39]. However, such O-forms do not presuppose or

automatically imply the existence of the total ( integrated ) forms of the associated

thermodynamic potentials, e.g., the ( Helmholtz ) free energy, or Gibb's function.

Together, the O-form and the a priori assumption for the existence of Gibbs and

Helmholtz functions will lead to a complete potential-based formulation. For distinction,

the original model, i.e., using only the O-forms, is referred to as the incomplete potential

formulation or the so-called nonassociative model.



The complete potential-based class of inelastic constitutive equations possess a

number of distinct and important attributes from both a theoretical and a computational

standpoint. First, they constitute the cornerstone of numerous regularity properties and

bounding ( or limit ) theorems in plasticity and viscoplasticity. Second, they result in a

sufficiently general variational structure, whose properties can be exploited to derive a

number of useful material conservation laws. Third, on the numerical side, the discrete

form of this same variational structure is of great advantage in the development of efficient

algorithms for finite element implementation, for example, symmetry-preserving material

tangent stiffness operators are easily obtained in implicit solution schemes (examples are

given later in Part II of this report). Finally, this complete potential-based framework

conveniently lends itself to intelligent application of symbolic manipulation systems that

facilitate the construction, implementation, and analysis of new deformation and damage

models [3]. Several of the currently used forms [60, 62, 24] do not conform to the general

potential framework, but it is still possible in some cases, by modifications of the

employed forms, to restore the complete potential structure.

3.2 Generalized Viscoplasticity With Potential Structure ( GVIPS )

The discussion is limited to the case of small deformations, in which the initial state is

assumed to be stress-free throughout. For generality, the initial state of material isotropy

or anisotropy is left unspecified in this section; i.e., except for the explicit appearance of

the corresponding material-directionality tensors in the arguments list for the potential

functions employed, all derivations remain generally applicable.

Consider the following general form for the Gibb's potential:

b
W = W ( o'0 ,a r ,D _ ) (3.1)

b denotes the T th-order tensorial internal state variables (where b=l,...,nb ; T=where a r

b
1,...,nT), a r can be a second-order tensor (back stress) or higher order tensors, b denotes
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the number of tensorial internal state variables; D d is the scalar internal state variable

( where d=l,...,rq ) and fro. the cauchy stress tensor. This is a typical general form for the

Gibb's potential, in which as many internal variables as desired may be specified in eq.

(3.1). The potential may be decoupled into elastic and inelastic parts:

= (3.2)

or

n_
# b

_F = V"(o#) + '_:(ar) + _"_F_(D d) (3.3)
b=l dffil

It follows from eq. (3.3) then that:

• - (3.4)_j- E o

g_- _ (3.5)

6_ (3.6)
Y_- c_D_

where ¢#. is the total strain andeS, is inelastic strain tensor, respectively.

b D dThese above relations are defined as the equations of state, and c%., a r, are the

"force-like" thermodynamic state variables while sij, 7 b, 7 d are the conjugate

"displacement-like" variables ( affinities ).

Now, assume the existence of a dissipation potential of the form,

b D d) (3.7).O = _Q(% a r,
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Which when written in its decoupled form [3] gives,

In order to provide a framework for the definition of the inelastic strain rate (k_) and

ensure its thermodynamic admissibility, the Clausius-Duhem or dissipation inequality is

required. That is,

nb
b.b

b Dd)= G_ -, + _--,(argn.)+ ___(Da_,_)>0 (3.9)_(% at, G
b d

The rate of change of the affinities may then be expressed in terms of their corresponding

internal state variables. That is, the flow or kinetic law becomes:

eo."- (3.10)
6%ro.

"_ - _ (3.11)gr
_ga_

.a=oT2
g_ t:_a (3.12)

From eqs. (3.5) and (3.6),

(3.13)

Y° L "J ,_"a;r'
(3.14)

then, from eqs. (3.11) (3.12) (3.13) (3.14),
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/ (3.15a)

(3.15b)

which defines the evolution of the internal state. Eqs. (3.10) and (3.15) represent the flow

and evolution laws, respectively. Both the state equations (3.4), (3.5), (3.6), and

evolutionary laws must be satisfied for the general forms of GVIPS which has an assumed

b D d) and Gibb's potential wherein both potentials aredissipation function .(2 -- .O(q: aT,

b and D d (see eq. 3.15).directly linked through the internal state variables a r

From eq. (3.15), the compliance operators are defined as follows:

o_hu _2_

L,4= b b ; Lz:= d_Da_Da (3.16)_ar_ar

(ar,D) to the "displacement-like" variables,they relate the "force-like" state variables • b • d

provide a link between the assumed Gibb's and complementary dissipation potential, and

ensures a number of desirable numerical features such as the symmetry of the resulting

consistent tangent stiffness matrix. The above discussion provides the general

thermodynamic framework in which the flow and evolution laws are associative.

3.3 Specific Form for GVIPS Model

Next, we use a specified form to constitute a GVIPS model. The emphasis is placed

here on a careful examination of the mathematical structure of these governing equations.

The transversely-isotropic viscoplastic material, together with the counterpart anisotropic
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elastic-response component, for a solid reinforced by a single family of fibers as in [71-

72], is assumed. The development and application of fairly comprehensive models for

anisotropic materials may be referred to [1, 6, 9-10, 21, 47, 53, 55-56, 60-62, 73].

3.3.1 Elastic Response

The general viscoplastic models consist of an elastic response and a viscoplastic

response. The hyperelastic response is assumed to be linear, i.e., a quadratic strdin-en_gy-

density function, U-_, is assumed to exist such that the Cauchy (true) stress components a are

_enby

o'_.= o---_. = C._6_ (3.17)

where a superscript "e"signifies an elastic component; and

P (3.18)6#=-oc;.+ £q

in accordance with the basic hypothesis of the additive decomposition of total strain tensor, co,

into its elastic, ¢._, and inelastic strain components, s_.. In the above, _ denotes the fourth-

order, symmetric, elastic moduli tensor, i.e. _ = _.

3.3.2 The Viscoplastic Response

Now, specify that T=2, nb=l, naN), so only one second-order internal variable, which is

the back stress ('mtemal), is specified. An outline of the basic equations is therefore given here.

The starting point is a postulate for the existence of a plastic potential function, fl, in terms of
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the invariants of the stress tensor, o, the internal variable (kinenmfio-hardening or back stress

tensor), o_ such that

(3.19a)

O.19b)

k_- c3f_ (3.20a)

Of 2
_'o - (3.20b)

where the parentheses are used to indicate functional dependence on the arguments inside (-);

and the overdot signifies a rate or time derivative.

The F and G are quadrat/c functions in terms of the invariants of the dev/ator/c

components of the effective stress, (a_-cqj), and the back stress, _j, tensors, respectively.

1 a
F= -_( _j-a_.)M_,(u n -an)/r_-1

0.21a)

0.21b)

in which the symmetric fourth-order tensor M_ is a function of fiber orientation tensor V_ (

material-directionality ) and is defined as:

1

Miju = Pij_- _,Qijld- _Rij_a
0.22)

wh_e
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1] 2 - 1 " _02 (3.23a)

_=K/I_ ; o=Y/Y, 0.23b)

and P_M, Q_d and R_ are defined as follows:

1"(Sik8j, +8.8))Pijkl = lijkl -- 8ijSld ; Ii_d --
0.24a)

=½(v..8.+v,,8)+v)8,,+v.8..)-2v?., 0.24b)

Ri_ = 3VijV_ - (VijS_j + VklSij) + 18ijSe 0.24(:)

V_ -- vivj 0.24d)

where vi is the unit vector defining the material fibre direction.

In the above, 0 < _ < 1 and 0 < _ < 1 are material-strength ratios, and the constants Kt (

or g4 ) and Yt ( or Yi ) are threshold strengths of the composite material in transverse ( or

longitudinal ) shear and tension/compression, respectively. For the isotropic case, _ = _ = 0 and

1_ reduces to P_, i.e., simply the classical von Mises-type forms in functions F and G.

Because of _= 1, nr-0, for the present purely mechanical theory, Eq. O. 1) comes to the

following decoupled form of a (Gibbs) complementary flee-energy den_ty function in tea'ms of

stress and internal state parameters [e.g. 39]; i.e., with superscripts %" and "i" indicating elastic

and inelastic parts,

_/(aa, a_.) = _'(o¢ ) + ¥_(a_i ) 0.2Sa)

we define _ and _ by the following forms:
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K,2 G,+#
_' (o'_.)= _ o'#.C_-'o'_ ; _'(a_,) : (1 _--_) H

0.25b)

and the (positive)materialconstants: H and/6 (mess units), and 13(dimensionless),as well as

fimction G = G(aij ) were defined previously in Eqs. 0.21b). Together with the strain vector

decomposition of Eq. 0.18), the above Eqs. 0.25) define the equa_ons o/state:

6#- P - 0W" . -x 0W* 1 (3.26a)

h = I--I,/C,_ ; _ = M_ 0_d (3.26b)

thedissipationfunction[2(a_,o_)isnow introducednaturallyasfollows:

-=a# _j-_/_> o (3.27a)

or, substituting for, in terms of O# and dto.from 0.25a), one getsfrom 0.27a)

°p . -- ?--g# , - #
/_0 &x#

k/ (3.2To)

The rateform presentlyconnecting_. and ?_j.through the Hessian matrixof _i ( hardening-

modulitensor),thetimederivativesofthesecond ofF-xlS.0-27),yields

h' _ [L_. ]-'):',,, (3.28a)+ h(l+ 2f3) a#.a,l . =

where L_ is called compliance operator, and h' is a scaledderivative,

h' = 0.28b)
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and we defined Z._ = M_ for the "gmeraliz_ invem_" of M: see details for different

comlifions (_ plane-strin/_c, gmeralized plane stress, eic) in Part

II [38]. Now, the present model _ a potential structure, i.e., the elastic part is formulated

in tenn. of a _ densityf_ctior_whereasa di_pationpotentialis utilizedin the

flow law for the inelastic strain rate and the nonlinear kinematic hardening-recovery type

evolution equation for the internal state variable.

3.3.3 The Viscoplastic Response: Flow and EvolutionLaws

From Eqs. (3.19-3.21) and (3.25-3.28), the final expressions for the inelastic flow and

evolution equations are given as follows, for the specific selection of power functional forms

for _ (F) and _2 (G):

%."" = f(F)r_. ; r_. = Miiti (ot_-atj) (3.29a)

"P _'-_"/l" "
?'o = ¢_ - h o , zo = Mo_a'_ (3.29b)

-i .p y
ais:[L_#l] (¢0-_ o) (3.29¢)

where f, h, and ¥ are the flow, lirden_ and recovery functions, respectively. The latter are

given in terms of their respeciive l_mients as follows:

f(F):v/(2 x, F -i) o.3o )

h = HIG i_ : 7 = R G_It/(K,_ (3.30b)

in which n > 1, It, I-I, _, It, and m > _ + 1/2 are (positive) material constants, aridKt was used

previously in Eqs. (3.21) to (3.25).
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Several regions of_wzmtinuities in the state (o_, oq_) space were introduced to account

for stress-reversal/cydic-loading/dynamic-recovery effects. This simply amounts to using

different functional forms for f, h, and y in different regions; i.e.,

f = f if F>0 (3.31a)

f = 0 otherwise (3.31b)

G=G if G>GO and dev(oij-ct,j)Tzij >0 (3.32a)

G = Go otherwise (3.32b)

where the "small" constant (cut-off value) Go is an "adjusted" parameter selected to fit the

experimental data, and so as to prevent singularity in h when G-,0, and dev( ) is the deviatoric

part of (). Note that eqs. (3.22) provide the simplest form of internal loading-unloading

criterion; i.e., with the evolution for the internal strain variables, ?;_, during loading according

to eq. (3.29b), but with a different dissipation function during unloading giving a "magnified"

" [ I" l-'"rate of evolution, 7tj = L0.tt £n,, Y,m, to account for the "stiffer" response upon

unloading, with the moduli L_.n taken in the same form as for loading Lo_ in eq. (3.28a) with

Go replacing G. However, altenafive criterion are also pothole to handle these observed

readjustment of internal state [4], and may actually have direct impact on such cyclic-loading

phenomena such as ratchetting.

3.4 Generalized Viscoplasticity for Nonassociative Material

As discussed in section 3.1, the nonassociative models are those which possess a

partially (i.e., using only the f2-forms) or totally incomplete potential formulation. They

either violate equations of state or evolution equations. Their popularity in the literature is

mainly due to the added modeling flexibility to account for experimental phenomena by
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using arbitrary rate forms in the flow and evolution equations. In this section, Freed's

viscoplastic model [24] is used as an example to discuss the theoretical basis of the

nonassociative models.

This viscoplastic model with creep and plasticity bounds was developed to

represent the behavior of polycrystalline metals at high temperature, and is capable of

accurately predicting short-term plastic strains, long-term creep strains and the

interactions between them. It reduces analytically to a creep theory under steady-state

conditions and becomes a plasticity theory at its rate-independent bound. This model is

characterized by steady-state creep data, saturated hysteresis loops, and monatomic

stress/strain curves. A general mathematical structure for viscoplasticity admits two

tensorial internal variables, which are a short (a_) and a long (a_.) back stress, and one

scalar internal variable D, which is drag stress. In this model, the flow and evolution

equations are no longer derived fi'om f_-forms. Due to the nonassociative behavior of this

model, it will be verified that the consistent viscoplastic-moduli matrix is no longer

symmetric when the implementation of this model is discussed in Part H of this report.

As mentioned, the discussion is limited to the case of an isotropic material under

isothermal conditions. Freed's original model is temperature dependent, and some material

constants are temperature dependent. Under the present isothermal conditions,

temperature effect is canceled from the original model equations, and those material

constants which are the function of temperature are fixed during calculation at a given

temperature. Tests may be given at different temperatures as long as the given temperature

does not change during a test. In order to utilize the general l_amework of the algorithm

represented in the previous section, the original tensor equations [78], which have the

plasticity bound and influence of temperature variation are restricted and recast into the

format used in the algorithm of GVIPS to facilitate the implementation of NAV. To be

clear, the original equations of Freed's model will be transformed into the new matrix

format. (further details on these specific forms are given in Part 11).
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3.4.1. Elastic Behavior

The stress, o_j, is taken to be related to the infinitesimal total strain, _j, through the

constitutive equations of an isotropic Hookean material, viz.

s, - ,.. =0 (3.33a)

and

a_ = 3_:e_ (3.33b)

which are characterized by the shear, g, and bulk, r,, elastic moduli, and where

Sij = Gij- _ Gtt(_ii and Eij = FAj - 16_. (3.33c)

denote the deviatorie stress and strain, respectively. Eq. (3.33a) characterizes the

deviatoric stress response, while eq. (3.33b) characterizes the hydrostatic stress response.

Based on the previous framework of section

behavior are recast as,

=C.&4,

where a_j, z_j are the same definition as before.

E are defined as follows:

3.3, the above equations of the elastic

(3.34a)

(3.34b)

The shear modules G and elastic modules

G = _ + lat T (3.35a)

E=2(I+v)G (3.35b)

where T is temperature and v is Poisson's ratio, go and lat are material constants.
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3.4.2. Viscoplastic Behavior

Plastic flow equation:

1 $¢--a#
(3.36)

whose kinetics are governed by

• 11,-_11<K (3.37)

withtheVonMisesnorm Ib-all: (_o.-_,X_#-_.) (3.38)

and where K > 0 denotes the plastic yield stress.

The norms ( or magnitudes ) pertaining to the deviatoric tensors of this section are defined

by

IMI=_ and IIr_l=_½n,n_ (3.39)

where Iij is any deviatoric "strain-like" tensor, and IIij is any deviatoric "stress-like"

tensor.

Associated material functions quantifijing plastic strain rate are as follows:

0 lexp[-Q flnr T--L1+ 1)] when O<T<T t[ LK_L LT.I

(3.40)
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(3.41)

Eq. 3.36 may be recast as follows:

i_: f(J,D)F_ ; r_- M,_(,_-_) (3.42)

where, fis the function of J and drag stress D, which is:

1 .47
/ --_A_--_Si,,h(-3-) (3.43)

where J is quadratic function in terms of the invariants of the deviatoric components of the

effective stress, (o',j - a_.). i.e.,

1 £7J=ll_o.-_o.II_--_(¢-_)g_(_,-_,) (3.44)

in which Mijk_ is defined in eq.(3.22). Due to the isotropic behavior assumed in the Freed's

original model, _ = _ = 0, and Mijkl reduces to Piikl as defined in eq.(3.24a). All presently-

used forms of this latter model are restricted to isotropic behavior; this is also the case

here for all the tests performed later in section 4.

The ( deviatoric, tensor-valued ) back stress, a, accounts for kinematic (flow-

induced, anisotropic ) hardening effects. Here a is taken to be a finite sum of the

individual back stresses, i.e., o_j = a_ + tt_ , where a_ is called the short-range back

s is called the long-range back stress [24]. The evolution of these backstress, and t;t#

stresses is described through the deviatoric constitutive equations as follows:

Evolution equation:
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a_= - , (3.45a)

zLt ")
(3.45b)

where H., I-h are the short and long term hardening moduli, and L., Ls are the thermal

limiting states of the short and back stress, respectively,

(C-D)(D Do
H, = tt and L, = f --"--- " (3.46a)

6C

I-It- /z and L,=(1-f) (C-DXD-D°) (3.46b)

In eqs. (3.45), the first terms represent hardening while the second terms represent a

deviation from strain hardening-a phenomenon called recovery. The evolution of the back

stress accounts for the rapid change in stiffness that is observed during the transition from

elastic to plastic behavior.

Evolution equations (3.45a, b) for the back stress may be recast as follows:

"S "p S
dev((x,_) = 2H,% - g,_; ; _,j = Mijkl_d (3.47a)

, ,dev dt = 2Hl(_l - glglij ; gij = Mij"Ct_' (3.47"0)

where, g,, g, are defined as:

g" = 2L, _,D)
(3.48a)
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gt = 2L l [, D )
(3.48b)

Another internal variable D, the drag strength, accounts for isotropic hardening

effects. Because of its scalar nature, the strain hardening and dynamic recovery terms are

combined into a single, nonlinear, hardening function, and the evolution of the drag

strength is as follows:

b (3.49)

in which the first term of eq. (3.44) represents hardening, the second term recovery. The

drag strength is bound by the interval D o _<D _<Din.

The hardening modules and other material constants for the drag strength are given as

follows.

/ (o-D0)/ c V
h= ho_Si_o-_-SC]J

(3.50)

y = Asinh'[D--_ ° ] (3.51)

1
D_ = 2- ( C+Do ) (3.52)

2

{h_h° when Tt < T < I".h° = h°- h_T when O< T < T,
T,

(3.53)

This viscoplastic model is constrained such that creep is its lower ( steady-state )

bound, and plasticity is its upper ( rate-independent ) bound. When at steady state (i.e.,

&=0, /)=0), this model reduces analytically to Odqvist's creep theory, which greatly
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simplifies the model and the process of its characterization. When below the plastic yield

surface, i.e. F < O, ( where, F = _s-a D - K or whenever I_-all < K ), this model is a

viscoplastic formulation.

From the above equations it is noted that there are 13 material constants required

to characterize this viscoplastic model:

T., the melting temperature; "It= T./2.
Q, the activation energy for self-diffusion.

,9, the thermal function.

H,, H4are the hardening modules of the short, long-range back stress, respectively.
f, the partitioning of back stress between short and long-range contributions.

A, C, Do, 8, h0, hi,, m, n are other material constants used in the above eqs.

3.5 The Implicit Integration Scheme

Based on the theory discussed in the previous sections, the general implicit

integration scheme is presented in this section. The details of the implementation and

algorithm are discussed in Part H [38]. As mentioned, the Euler scheme is presently used

as the integrator, since it shows superior stability and convergence properties and has

become the proven standard for the numerical integration of the viscoplastie rate

equations. In this section, all equations and expressions are shown using a concise matrix

notation for the integrated stress and internal stress fields. The contracted (Voigt)

representations in vector forms for the components of the corresponding symmetric,

second-order, tensor are utilized, with a slight abuse in notation to indicate the vector-

matrix representations, that is, matrices are defined by under-curved symbols and vectors

by underlined symbols.



25

3.5.1 General Form of Newton Iterative Scheme

Consider a typical time step t_ -, t_, where the state variables at step n are

known. Assume that At and As are given in the total strain field. The basic problem of

evolution, then, is to update the state variables in a manner consistent with the governing

equations; i.e., evolution equations and flow equations for the state variables.

Using the implicit backward-Euler scheme, the update formulas are based on the

following equation

2',_, = 2'. +d2',,+, (3.54)

where 2". is state variables, and dE.+, is the increment of the state variables, n is the step

counter. For the GVIPS model,

whereas for the NAV model,

and the expression for the state variables increment is

(3.55b)

d2".+,= _R_.+, (3.56)

where Kx is the iterative Jacobi matrix of state variables and R.+, is the residual function

of state variables. The specific forms of Kr and R___+,for the GVIPS and NAV models

are defined in Part II.
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To determine the updated values for the state variables, a local iterative solution is

needed based on the eqs. (3.54, 3.56). For a typical iteration k -> k+l,

____k+l k O.s7)

note that d___t ! are evaluated based on the last updated states which means the iteration

scheme is implicit. This equation represents the classical Newton-Raphson iteration

scheme. It is well known that the basic Newton scheme is of "local" character, i.e.,

exhibiting excellent convergence properties (asymptotically quadratic rate) only when the

starting trial solution is near the converged value, but for the trial solution which is far

away from the converged value, it becomes very difficult to converge. Therefore, more

robust numerical schemes are required for complex nonlinear problems.

3.5.2 Line Search Scheme

As mentioned, for highly-nonlinear problems, although the implicit scheme

described above is unconditionally stable, its successful application still requires the use of

an advanced numerical technique such as a line search method to produce an effective,

robust solution algorithm. Its purpose is to guide the solution towards convergence, and

is accomplied by searching for a scalar multiplier that adjusts the amount of the iterative

increment vector to be updated within each iteration based on the optimization theory.

The line search method was utilized successfully in the global finite element

solution of practical problems such as concrete cracking [20], and there is well-document

evidence that the use of the line search is also essential for robust performance of global

Newton's method in inviscid elastoplasticity [68]. At the global level, the concept of the

line search algorithm pertains to minimizing the potential energy, that is, the work done by

the residual force due to the iterative displacement. Here, and in this same spirit, the line
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search method is firstly applied at the local (material point) level to drive the residual

constitutive functions to be zero based on the optimization theory.

Considering the line search method, eq. (3.57) need to be modified. Thus, for a

typical iteration k -> k+l, the iterative procedure with line search may be described by the

following expression.

_k+l k,+, = __E,,+,+ r/d_ELl (3.5s)

where r/is a scalar (l>rl_>0) which adjusts the step size to optimize the iterative solution.

of the line search method is to minimize I_R_+_.d_t,,_[ based on theHere, the objective

optimization theory. Here, "." indicates the dot product of two vectors. In eq. (3.58), R

is the "vector-valued" residual function of the state variables. For the GVIPS model, this

is written symbolically as

gk=(--R_') (3.59a)

- t_R'=J

and for the NAV model,

R k
-- R k

(3.59b)

For unconstrained problems, the residual comes from the difference between the current

iterative value and the previous converged value. The calculations for d__ depend on the

residual function and its derivatives at the previous step. The specific forms of R for

GVIPS and NAV are definedinPart H [38].

Now consider,
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s(_)=_R(n)• d_

in which _Xk and AX__ are fixed, and R and s are functions of rl. When 13 = O,

so=s(n=o)=_r.(n=o)•dr.__=Ro•d_Z_

(3.6o)

(3.61)

_Re is the residual function of the state variables at the end of the previous iteration.

According to optimization theory, the best (optimum) solution is S(TI) ---- 0, but

numerically, this is not realistically possible and it is also inefficient to try and achieve this

objective. In practical problems, a 'slack' line search is used, with the aim of making the

magnitude of S(TI) small in comparison with that of S(TI=O), i.e.

s(Tl= 0)] (3.62)

where 13_ is the 'line-search tolerance'. Based on past research experience, a suitable value

for 13t,is of the order of 0.8 [20]. After the successful search for r I is completed, eq. (3.58)

keeps updating state variables until they satisfy the convergence condition. More details

of the line search method are discussed in Part II [38].

The convergence criterion here for Cauchy stress is in the following form,

O'n+ I

I+00  ,<tol (3.63)

wh e,U.IIis the EucLidean norm of vectors, and tol is tolerance. Other internal variables also

have similar convergence criterion.
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4. Applications

Considering the theoretical basis presented in the previous sections, a number of

numerical tests are selected to demonstrate the capabilities, as well as various aspects, of

the implicit iterative algorithm, e.g., validation, accuracy, robustness and computational

efficiency. For any numerical method, accuracy, efficiency and a balance between the two

are always major concerns. Validation of the algorithm may be proven by convergence and

accuracy, while efficiency may be shown by CPU time comparisons with an explicit

method or the same implicit method but with a different step size, but whose solution has

the same accuracy.

In this section, the performance of the implicit algorithm for both GVIPS and NAV is

tested. For NAV, the new line search technique outlined earlier in section 3 is used to

improve the efficiency and also guarantee the convergence. The details of the particular

line search scheme utilized here in Part II of this report. The subincrementing technique is

not used in the implementation of the NAV modal. In the GVIPS model, there are regions

of discontinuities in the state (oij, _j) space to account for stress-reversal effects, and for

time steps during which these regions of discontinuity are traversed, the line search

technique is no longer as powerful, as compared to the implementation of the NAV model

(note that the line search is strictly valid only if the same "unique" forms of the residual

functions apply during the considered step). Consequently, a subincrementing scheme is

still needed to refine the global step size sufficiently to capture the point of discontinuity.

For all other steps which are in the continuous region, the line search method will be

shown to play an important role in terms of efficiency and convergence.

For all test cases, the material parameters used in GVIPS model are associated

with W/Kanthal (a unidirectional mmc model material), whereas the material parameters

used in the NAV model are for copper. Material constants for both classes ofviscoplastic

models are given in Appendix 1. Consequently, no direct comparison between the GVIPS



3O

and NAV models can be made as the different test cases are performed with these two

materials.

The solution schemes developed above were implemented in conjunction with a 4-

node shell mixed finite element, as described in [66, 79]. All numerical simulations

reported herein were obtained using this element.

4.1. Validation Tests

Here, various tests are used to validate the implicit integration algorithm for both

the NAV and GVIPS models. These tests include tension, cyclic, creep, and relaxation

tests performed with different load steps. Additionally, a nonproportional multiaxial

loading test was examined using the NAV and GVIPS model. Note that an explicit, one-

step forward Euler integrator was used to obtain a converged reference solution for

comparison with the implicit integrator. For all tests of GVIPS, the load is transverse to

fibers. Among all tests, some tests are designed for assessing numerical performance of

both models, and others are taken according to literature [3 6].

Note that in the following tables, GIT is the average global iteration number, SUB

is the average subincrement number, and LIT is the average local iteration number. Also,

note that all of the CPU times are normalized with respect to the smallest CPU time. Here,

CPU is the total time of a complete finite element analysis. Note that there are 8

integration points for one homogeneous element. For the implementation method in the

following tables, the implicit method denotes the backward Euler scheme, whereas the

explicit method denotes the forward Euler. Finally, for convenience, all validation tests

discussed subsequently are based on a finite element mesh consisting of a single element

representing a material point.
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4.1.1. Tension Tests

This monotonic hardening test is used to demonstrate the accuracy and efficiency

of the proposed implicit integration algorithm. For both NAV and GVIPS, the uniaxial,

strain-controUed tensile test as shown in Fig. 1 was simulated. Where, the maximum

applied strain was 0.20, and the total strain rate was 7.6 x 10"6/s and 3.0 x 10"5/s for NAV

and GVIPS respectively.

4.1.1 (a) NAV Isotropic Model

Table 1 shows the results for a number of different load steps. First, note that the

explicit integration method failed to reach the maximum strain level. ARer 10,000 steps,

the explicit solution reached a maximum of 5% strain. To try and reach the maximum

strain level, it was necessary to keep refining the step size, but this was stopped when the

number of load steps and the CPU time became prohibitively large. From figure 2, the

results of three different load step sizes are shown. The maximum stresses are 148, 148.57

and 148.82 MPa for the 73, 20, and 10 load steps, respectively, and the differences are

less than 1%, thus demonstrating the accuracy of the integration algorithm. It also may be

concluded that the 73 step test is the converged solution by comparing its results with the

explicit method in the region up to 5% strain. The agreement with the explicit reference

solution is also validation of the implementation of the implicit algorithm. With regards to

CPU time, it is found that the ratios of the explicit method, in the region up to 5% strain,

and 73 step implicit method, in the region up to 5% strain, is 200/2.5=80, and the ratio of

73 and 10 step cases is 3.2, which demonstrates the efficiency of the scheme. As an aside,

the fact that the explicit solution required 10,000 steps is characteristic of explicit methods

in general. For example, recent work by Arya [7] required from 40,000 to 100,000

iterations.
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strain _

Time

Figure 1 Tension Schematic
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Table 1 Tension results for NAV

Copper, Temperature=121 C ° , ¢=7.6 x 10_/s , e._.ffi0.20, Dt.o=0.57 Mpa

method

expli_
_np_dt
_p_
knpli_

number of

load steps

CPU time GIT LIT

10,000 > 200 1 0

73 3.2 2 7

20 1.1 3 8
,=.

l0 1 (77 s) 9

200

(/3

180

160

140

120

100

80

60

40

20

0

u

_ _._'¢" = Max. stress

148.0 • 10 steps

148.57 • 20 steps

148.82 • 73 steps

Explicit (10,000)

I l J i I

0.00 0.05 0.10 0.15 0.20 0.25

Strain

Figure 2 Tension results for NAV ( 121 C° )

0.30
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4.1.1 (b) GVIPS Anisotropic Model

Table 2 illustrates the results for three different load step increments, utilizing the

GVIPS model. Once again, 10,000 steps were applied for the explicit solution, here

however, the explicit solution reached the maximum strain. The results of three different

cases are the same as shown in fig. 3, thus demonstrating the accuracy of the integration

algorithm and also the validation of the implementation of the implicit algorithm. The

conclusion may be drawn that the 10 step case is the converged solution by comparing its

results with the explicit method. With regards to CPU time, it is found that the ratios of

the explicit method and the 10 step implicit method is 312, and the ratio of the 100 and 10

step case is 2.0, thus demonstrating the efficiency of the scheme.

4.1.2. Cyclic Loading Tests

This example serves to assess the accuracy of the stress predictions and to

demonstrate the robustness of the implicit algorithm. For both NAV and GVIPS, the

uniaxiai, cyclic (non-monotonic), strain-controlled test, shown in Fig. 4, was simulated.

The maximum strain amplitude was :L-0.144 percent applied at a rate of 0.002/s.

4.1.2(a) NAV Isotropic Model

As shown in figure 5, the 100, 10, and 5 step cases agree reasonably with the

converged explicit solution. For the 5 step case, the stress is updated from approximately -

220 MPa to 200 MPa within one step, which demonstrates the robustness of the

algorithm. Comparing the 100 step case with the explicit method which needs 10,000

global steps for one complete cycle, the CPU time ratio is approximately 340/6_-60 (table

3). Considering the comparable accuracy of these two cases, a CPU ratio of 60
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Table 2 Tension results for GVIPS

W/Kanthal, _=3.0 x 10 "sIs , ¢.==0.20

method

explicit

implicit

implicit

number of

load steps

10_000
100

10

CPU time GIT L1T

312 1 0

2.0 2 3

1.0 (73 s) 4

e_
12.

m
t_
o

O3

800

700 -

600

500

400

300

200

100 -

r • 100 steps

• 10 steps

I I I I

0.00 0.05 0.10 0.15

Strain

Figure 3 Tension results for GVIPS

0.20 0.25
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Figure 4 Cyclic Schematic
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Table 3 Cyclic results for NAV

Copper, Temperature=21 CO, ¢=2x10"3/s , ¢,==0.0144, D_--5.9 MPa

method

expfidt

hnpfidt

impficit

implicit

number of

load steps

10_000
100

10

5

CPU time GIT LIT

340 3 0

6.0 2 4

1.05 3 10

3 221( ss s)

300

of)
¢o

O3

200 -

100 -

-100 -

-200 -

-300

-0.020-0.015-0.010-0.005 0.000

steps

10 steps

Explicit (10,000) • 100 steps

I I I I I I I

0.005 0.010 0.015 0.020

Strain

Figure 5 Cyclic results for NAV ( 21 C o)
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demonstrates a significant improvement in efficiency and may be attributed to the use of

the line search method.

4.1.2(b) GVIPS Anisotropic Model

Figure 6 shows the explicit converged solution as compared to the implicit 100, 10

and 5 step cases. The fact that all of the implicit cases match the converged solution

demonstrates the accuracy, efficiency and robustness of the algorithm. In addition note

that even the 5 step case matches the converged solution at all points of the hysteresis

loop. The previously discussed discontinuities within the GVIPS formulation occurs along

the path from A to B and from C to D as shown in figure 4. Those steps which contain the

discontinuity point require subincrementing in order to cross the discontinuity. Taking the

10 step case as an example, the third and seventh global steps contain the discontinuity.

Thus, only these two steps required subincrements which averaged 22 in this case. As

suck, comparing the 10 step case with the explicit solution (table 4), the CPU ratio is

approximately 180 which demonstrates a marked saving in CPU time yet with comparable

accuracy.

4.1.3. Creep Tests

The creep test is used to test both the accuracy and robustness (stability) of the

implicit integration algorithm. In a creep test, the primary creep region is controlled by

accuracy due to the high inelastic strain rates involved. In the secondary (steady state)

creep region, the stability or robustness of the integration algorithm is tested. Both the

NAV and GVIPS models will be used in the creep tests. For the NAV model one creep

test of 1000 seconds will be performed, at a constant creep stress of 24 Mpa, whereas for

the GVIPS model, one creep test of 1800 seconds at a creep stress of 70 MPa will be

performed. Note in Fig. 7, ¢0 is the total strain at the beginning of the hold time and ¢s is



39

Table 4

W/Kanthal

Cyclic results for GVIPS

, _=2x10"3/s , _w=0.0144

method

explicit

_plidt
implicit
implicit

number of

load steps

CPU time G1T

180.0 310,000

100

1 ( 54 s)

LIT

0

5.0 2 4

10 1.05 4 10

5 10 20

600

n

O3

400

200

0

-200 "

-400

-600

-0.020-0.015-0.010-0.005 0.000 0.005

steps

[ ___,...,.,,,_ = 10 steps
• 100 steps

Explicit (10,000)

i I I I i I I

0.010 0.015 0.020

Strain

Figure 6 Cyclic results for GVIPS
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the amount of total strain at the end of the hold time. A large initial loading rate was

chosen for both creep tests such that the initial load-up region may be considered as a

purely elastic loading without any inelastic strain.

4.1.3(a) NAV Isotropic Model

The explicit method with a total of 20,400 global steps was determine to have

converged and is used as the reference solution (Fig. 8). The implicit method, was run

using 480 and 880 steps (table 5). With the 880 step case producing a solution that differs

from the converged solution by approximately 1%. Note that it is in the primary creep

region where accuracy is most important. It is well established that a larger number of

steps are required to satisfy the requirement of high accuracy for the rate-dependent

problem. With regards to CPU time, upon comparing the explicit method with the 880

step implicit case, there is a ratio of 32/1.6=20 which is a significant reduction in

computation time.

4.1.3(b) GVIPS Anisotropic Model

The converged solution was obtained using the explicit method with a total of

5840 global steps (Fig. 9). Note that the difference between the explicit method and 805

step implicit method is less than 2% (table 6). Comparing CPU times, the ratio between

the explicit method and the 805 step case is approximately 6.0, which demonstrates the

efficiency of the implicit method. The 405 step case has a comparatively large error in

comparison with the explicit solution. But, note that the secondary creep rate of the 405

step case does appear to match that of the converged solution. As expected, since the

error may be attributed to the step size (accuracy and not stability), an improved primary

creep response was predicted (805 step case) thus basically shitting the curve upward and

closer to the converged solution.
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Table 5 Creep results for NAV

Cop

method

explicit
implicit
impticit

_r, Tem_121

CPUnumber of

load steps

20,400
880

480

C ° , oo=24 Mpa_ 6" = 2.4M Is

¢o (lO'a) */(10"_) GIT

32 0.6273 0.8114

1.6 0.6313 0.8022

I (954s) 0.6313 0.7853

, D_=_.57 MPa

LIT creep time

(s.)
0 I000

1 1000

2 I000

0.20

O
o

O
X

c-

O

u3
m

_=

0.15

0.10

0.05

0.00

hold stress = 24 MPa

explicit (20,400)

..... 880 steps

480 steps

I. I I I

0.00 0.05 0.10 0.15 0.20

Creep time (hours)

!

0.25 0.30

Figure 8 Creep results for NAV ( 121 C o)
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Table 6 Results of creep tests for GVIPS

method

implicit

implicit

explicit

number of

load steps
405

805

5840

W/Kanthal, a0 = 10 ksi, 6- = 1 ksi/s

CPU

1 (700)
1.7

11.0

co ( 10"3)

0.3850

0.3850 1.1016

1.2630

0.3759 1.2884

GIT

2

2

2

LIT

2

1

0

creep time

1800

1800

1800

1.0

O
¢D
=i
x

O3
o

°m

t-

0.8

0.6

0.4

0.2

0.0

0.0

stress = 70 MPa

............ 405 steps

805 steps

Explicit (5840 Steps)

I I I

0.1 0.2 0.3

Time ( hours )

Figure 9 Creep results for GVIPS

0.6
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4.1.4. Relaxation Tests

The stress relaxation test may also be used to assess the accuracy of the integration

method. Subsequent to load up, typically, the relaxation test, Fig. 10 is characterized by a

marked decrease in the initial stress at a high rate. The amount of stress relaxation and

corresponding rate is dependent on the specific material model. Thus, an accm_e

integration method is required so as to properly predict the highly non-linear stress

response. Relaxation tests were performed for both the NAV and GVIPS models. For the

NAV model, the constant strain is 0.01 and the relaxation time for the test is 1000

seconds. Whereas for GVIPS, the constant strain is also 0.01, but the relaxation time is

1800 seconds.

4.1.4(a) NAV IsotropicModel

The converged, reference solution for the 1,000 second relaxation test using the

explicit method required a total of 80,000 steps (table 7). This large number of steps was

required to accurately predict the highly non-linear stress response. The implicit method

was run using 110 and 210 steps, with the 210 step case essentially matching the

converged solution (Fig. 11). Again, note that it is in the region where the stress decreases

at a high rate that the solution is most sensitive to accuracy. Comparing the CPU time

between the explicit and the 210 step implicit, there is a ratio of 900 in CPU time. Thus

for comparable accuracy, the implicit method is far more efficient. As an aside, note that

there is no significant predicted stress relaxation (i.e. < 4 MPa) for Freed's model. This

may be due to the simplifying assumption that there is no explicit thermal recovery of the

short- and long-range back stresses in his model.

4.1.4('o) GVIPS Anisotropic Model

The converged solution using the explicit method required a total of 3894 global

steps (table 8). Fig. 12 shows the results for 22, 52 and 102 steps. Note that it is in the
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Copper Temperature==316 C °, _/=0.01 _=1x10 "ss"z ,

method

explicit

implicit
implicit

numberof

load steps

80,000

210

110

CPU

1350

1.5

1 (160s)

36.331

36.248

36.248

Dt.o--0.50MPa

_/ GIT LIT relaxation

MPa time(_

32.848 1 0 I000

32.879 2 1 1000

33.093 2 2 1000

38

t_
a.

t_

¢0

37-

36-

35-

33-

explidt(80,O00)

..... 210steps

110 steps

!!_. Max. strain = 0.01

.......

I I 1 I I

0.05 0.10 0.15 0.20 0.25

RelaxaUonUme(houm)

0.30

Figure 11 Relaxation results for NAV (316 CO )
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Table 8 Results of relaxation tests for GVIPS

W/Kanthal ,el = 0.01 _=lx10 "3 s"1

method

implicit

implicit

explicit

number of

load steps

52

CPU

(s)
1 (71)

1.8

cro ksi

49.887 24.316

49.887 23.625102

3894 53.9 50.701 23.430

GIT

2

2

2

LIT

2

1

0

relaxation

time(s)
1800

1800

Igoo

400

Max. strain = 0.01
350 -

.... 102 steps

300 - --"-- 52 steps

=_ _ Explicit (3890 steps)

_o 250-

150 J '""'C'_'--2-_22---2--L-L-L_"-
I I I I

0.0 0.1 0.2 0.3 0.4

Time ( hours )

I

0.5 0.6

Figure 12 Relaxation results for GVIPS
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initial relaxation region, (time < 0.2 hrs.) in which the solution is most sensitive to time

step size and thus accuracy. The difference between the explicit method and the 102 step

implicit case is less than 1% at the end of the relaxation period and approximately 8%

difference at 0.05 hrs, where the solution is highly non-linear. Again, comparing the CPU

time between the explicit and 102 step implicit methods, it is shown, see table 8, that a

speed up ratio of approximate 30 times is indicated. Once again illustrating the efficiency

of the implicit method. Finally, note that GVIPS predicts a significant amount of stress

relaxation as suggested by experimental evidence, that is, approximately a 50% reduction

in the initial stress after load up.

4.1.5 Nonproportional Multiaxial Tests

This final test examines the integration algorithm under nonproportional loading

conditions. The element is subjected to the nonproportional strain path shown on Fig. 13.

This path is taken from the experimental work of Lamba and Sidebottom [36]. This

applied strain path was chosen because of its wide range of angles between segments with

equal positive and negative peaks. The 8 paths combine shear, axial loading and

unloading. The end points of the path segments were numbered from 0 to $ and the path

was traversed in a numerically increasing sequence. Note that the experiment given in Ref.

[36] was conducted on a saturated specimen, that is, complete stabilization with regards to

hardening has occurred.

4.1.5(a) NAV Isotropic Model

The stress response of the model to the applied nonproportional strain path

appears in Fig. 14. This test demonstrates the robustness of the scheme discussed. The

predicted response, shown in Figure 14, matches the experimental results (not shown in

fig. 14) given in Ref. [36] very well. In addition, note that even one step per path ( figure

14 ) can successfully complete this complicated loading history. Because the 50 step and

10 step cases give identical results, it is concluded that 50 steps has converged to the
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correct solution. Finally the CPU time for 1, 10, 50 steps per path are 1 ( 35s ), 3.8 and

21.4, respectively.

4.1.5(b) GVIPS Isotropic Model

This GVIPS model was originally used to characterize W/Kanthal whose material

constants are given in Appendix 1. In order to compare the stress response of the GVIPS

model under nonproportional strain path with the experiment given in [36], the material

constants needed to be changed to fit the copper material used in the experiment. The

new material constants are given in Appendix 2, wherein the material is taken to be

isotropic, i.e., 0_---¢1=1.0. Based on the new material constants, the predicted response of

the GVIPS model is shown in Fig. 15, with the 10 step and 100 step cases giving almost

identical results. Given the very crude characterization of the GVIPS model (essentially

fitting the limit state in a single pure shear test), it is remarkable how accurate it represents

the experimental results.

4.2. Efficiency" Comparative Studies

In addition to validating the proposed integration method, efficiency studies are

necessary since efficiency is a very important feature that is required in order to solve

large, realistic finite element problems. For such practical problems, it is desirable and

necessary to obtain an accurate solution in the most economical manner, that is, using the

minimum CPU time.

Many mathematical techniques have been applied in order to develop computationally

efficient methodologies for nonlinear analyses in which a large global time step size may

be chosen in order to reach convergence with sufficient accuracy. Subincrementing has

been shown to be successful in guaranteeing convergence when using a large global time

step. The basic idea in subincrementing is to refine the global step size to achieve local
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iteration convergence, as well as maintaining sufficient acctwacy with regards to the

updated fields, i.e. internal, state variables, mess, strain. For difficult load histories such as

the cyclic test or for a complex, numerically stiff constitutive model, such as Freed's NAV,

too many subincrements may be required, which directly results in large CPU times.

Basically, subincrementing is useful for improved convergence, but it is not efficient since

it does not improve the rate of convergence. Also, to date, there seems to be no

agreement with regard to a single criterion of general applicability for determing the

"optimal" number of subincrements. With these points in mind, a line search method was

introduced here as a viable, and far more effective, alternative in providing improved

convergence and solution economy. A detailed discussion of the line search method will be

presented in Part II [38].

In order to compare the efficiency between the line search method and the

subincrementing method, all the tests described below were performed using both of the

two methods. In the following, Method 1 utilizes subincrementing only, while Method 2

utilizes only the line search method. Recall that for GVIPS, there are regions of

discontinuities in the state space to account for stress-reversal effects which are loading

and unloading conditions. In these steps, subincrementing is combined with line search in

order to refine the step size to locate the point of discontinuity. This is required since the

premise of line search is that equations optimized are continuous. Thus, Method 2 consists

of a combination of subincrementing and line search methods, when the GVIPS model is

utilized under cyclic loading conditions. For either the NAV or GVIPS model under

monotonic loading condition, Method 2 is a line search only method. The results

presented in tables 9 and 10 demonstrate the advantage of using a line search in the

integration algorithm.

Comparing method 1 and 2 in the above tables, note that the CPU time of method

1 is always larger than the CPU time of method 2. In particular for GVIPS, the CPU ratios

are 6.0, 4.5, 1.5, and 1.1 for the tension, cyclic, creep, and relaxation tests, respectively.

For NAV, the CPU ratios are 13.65, 14.5, 1.55, and 22.2 for the tension, cyclic, creep,
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Table 9 Results of comparision for GVIPS

Table 9a tension test. global step_10 _m=0.20

Method CPU (seconds) GIT

subincrementin$ 6.0 11

line search * 1 ( 73 ) 3

SUB LIT

11 3

0 4

Table 9b cyclic test. global stepsffi25 _,ffi0.0144

Method CPU (seconds) GIT

subincrementing 4.5 3

line search * 1 ( 33.91 ) 2

SUB LIT

8 2

0 4

Table 9c creep test. global stepsffil05 0-=70 MPa

Method CPU (seconds) GIT

subincrementin 5 1.5 4

line search * 1 ( 178 ) 4

SUB

4

0

LIT

Table 9d relaxation test. global steps=105 _,_--0.01

Method CPU (seconds) GIT

subincrementin 5 1.1 3

line search * 1 ( 122 ) 3

SUB LIT

2

2

* Combination of the line search method and subincrementing (only when crossing

regions of discontinuity).
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Table 10 Results of comparision for NAV

Table 10a tension test. global steps=10 _,ffi,=0.20

Method CPU seconds)

subincrementin s 13.65

line search 1 ( 77 )

GIT SUB LIT

16 15 3

3 0 9

Table 10b cyclic test. global steps=5 _m_=0.0144

Method CPU ( seconds

subincrementin_ 14.5

line search 1 ( 38 )

(/IT SUB LIT

8 15 5

3 0 22

Table 10c creep test global steps=23 o=70 Mpa

Method CPU ( seconds

subincrementing 1.55

line search 1 768 )

GIT

25

20

SUB LIT

15 5

0 15

Table 10d relaxation test. global steps=22 e_=0.01

Method CPU (seconds)

subincrementin_ 22.2

line search 1 ( 50 )

GIT SUB LIT

6 24 2

2 0 3



56

and relaxation tests, respectively. For NAV the largest CPU ratio is 22.2, i.e., method 2

with line search is approximately 95% faster than method 1 with subincrementing. This

shows a significant improvement in efficiency particularly for a problem which requires

accuracy, as in the case of the relaxation test. With regards to the number of iterations

both globally and locally, line search usually required more local iterations, but this is due

to the fact that it does not use any subincrements. From the results, it is apparent that the

small additional local calculations required for the line search method leads to a saving in

the total calculations. Specifically, some tests may need a large number of subincrements.

For example, in the relaxation test of NAV, the number of subincrements for method 1 is

24 with 2 local iterations, table 10b. On the other hand, with line search, method 2, only 3

local iterations are required, thus resulting in a significant reduction in CPU time.

Finally, comparing tables 9, and 10, notice that for GVIPS, the CPU ratios of

method 1 to method 2 are always less than NAV's. This trend may indicate that it is more

difficult to integrate NAV without the help of sophisticated numerical techniques. On the

other hand, since line search does not appear to significantly affect local convergence,

GVIPS may be comparably easier to integrate and may only require a simple

subincrementing scheme.

4.3. A General Structural Problem Using a NAV Isotropic Model

As has been stated throughout this report, the ultimate test of the integration

method is to demonstrate its accuracy, robustness and efficiency when applied to a

realistic structural analysis problem. In this context, a perforated plate as presented in

reference [29] and [76], was analyzed using Freed's NAV model. A quarter of the plate is

discretized for FE analysis (see figure 16). A linearly increasing specified displacement,

with a maximum value of 0.5 percent ( Al/w ) at a rate of 6.67x10"S/s, was applied along

the upper boundary of the plate. Material constants are the same as those given in

Appendix 1. The results shown in Figure 17-19 are the effective stress distribution at the
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final load level when 1, 5 and 20 global steps are utilized respectively. Also in order to

check the convergence and efficiency of the implicit integration scheme, an explicit test is

run by using 5000 global steps as the reference solution. The result shown in Figure 20

and Figure 21 are the effective inelastic strain distribution at the final load level by using

the implicit scheme ( 20 global steps ) and explicit scheme ( 5000 global steps ),

respectively. Note that the difference between these two figures is less than 1% which

means the 20 step case converged and may be chosen as the reference solution.

Comparing the 5 and 20 step cases (Figure 18 and 19), note that the effective stress

dism'bution of the 5 step case is qualitatively close to the 20 step case which shows

reasonable accuracy for even the 5 step case. Also, convergence was achieved using only

one global step, this demonstrates the robustness of the implicit integration algorithm.

Although the accuracy has decreased (12% difference in maximum J2) which is

understandable since this is a first order integration method and just one step is used. The

CPU time for the explicit scheme, and the 20, 5, and 1 step implicit cases are 12570, 251,

91 and 25 minutes, respectively. The CPU ratio of the explicit versus the implicit scheme (

20 steps ) is more than 50, thus showing the significant efficiency of the implicit

integration scheme. Comparing the implicit scheme itself, the CPU ratio of the 20 step

case to that of the 5 step case is approximately 2.7. This a significant saving in

computation time yet the results are almost identical, i.e. the difference is less than 2%.

Thus, for the complex structural problem, convergence may be reached in an efficient

manner without a significant loss in accuracy. Again, there will always be a balance

between solution accuracy and computational efficiency.

5. Summary & Conclusions

The general computational framework described in this report using the backward

Euler fully-implicit integration method has been determined to be successful for both the
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Figure 17 Effective stress distribution (1 step)
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Figure 18 Effective stress distribution (5 steps)
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Figure 19 Effective stress distribution (20 steps)
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Figure 20 Effective inelastic strain distribution (20 steps)





O3
LO
pC)
O

67

Figure 21 Effective inelastic grain distribution (S000 steps, explicit method)
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Generalized Viscoplasticity with Potential Structure (GVIPS) and the Non-Associative

Viscoplastic models (NAV). Only these Newton iterative schemes will provide, uniformly-

valid, convergent, implicit integrations for both GVIPS and NAV classes of viscoplastic

models. The algorithm was written in a concise matrix format so as to provide sufficient

generality and is automatically valid for both isotropic and anisotropic cases in full space

or subspaces.

All numerical tests show that the use of the implicit integration method is robust,

unconditionally-stable and provides first-order accuracy for both "small" and "large" At

that is, the integration method provides a balanced combination of stability and accuracy.

Even with nonproportional, multiaxial stress-strain states, sufficient accuracy and good

convergence characteristics were demonstrated for the implemented scheme.

In addition, it has been generally observed that explicit schemes either fail

completely or become prohibitively expensive, especially for the NAV class of models.

Specifically the time step size must be inherently very small in order to guarantee

convergence, which is not efficient. It is believed that this point has been clearly

demonstrated in the results presented here for the explicit integration cases. That is, it was

required that the number of time steps be on the order of 10,000 to 80,000 in order to

obtain a solution. These results appear to be consistent with other recent work, for

example that of Arya [7], that uses various explicit schemes.

The implicit integration scheme with simple subincrementing_ which improves

convergence, has been shown to be efficient when used for GVIPS and NAV. But on the

other hand, subincrementing alone is not efficient. That is, many subincrements and local

iterations are required. As a result, the "slack" method, which is the form of line search in

the present algorithm, enables the NAV class of models to converge stably with sufficient

accuracy and significantly improved efficiency.

PRECEDING PAGE BLANK NOT RLMED
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In comparing the recently-developed GVIPS classmodel versus some forms of the

presently-used NAV models found in the literature, the GVIPS formulation posses a more

theoretically sound basis from the thermodynamics standpoint, and exhibit symmetries

which are desirable with respect to computation in the corresponding integrated forms of

their flow and evolution equations. For example, for global iterations, GVIPS provide a

fully-consistent tangent stiffness, but for NAV, only an approximate tangent stiffness is

obtained. From the numerical tests in this report, it was found that NAV exhibited greater

difficulty in integration when compared to the GVIPS model. That is, NAV required more

iterations in order to reach a solution. However, by means of a line search scheme, NAV

(because of its continuous formulation), can now be integrated more easily even without

subincrementing. The overall efficiency of integrating the GVIPS class of viscoplastic

models is even more impressive when one recalls that a combination of subincrementing

and line search methods must be applied; because of the discontinuity in GVIPS evolution

equations, due to the need to correctly account for unloading. In particular, in the

discontinuous regions, subincrementing is still required to refine the time steps sufficiently

in order to capture the discontinuity, but is only needed in those areas (few steps) near the

discontinuity. Alternatively, in the continuous regions, of GVIPS the use of a line search

technique applies and does contribute significantly to improve convergence. Thus,

intelligent combination of line search and subincrementing guidance convergence as well

as overall efficiency for the GVIPS class of models.
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Appendix 1: Material constants

NAV material constants ( Copper ):

q

Constant Value Units

"It 678 K

43000 MPa

_tl -17 MPa/K

ho 50 MPa

hi 15 MPa
J/tool.200,000

8.314K

A 20,000,000 1/s

n 4.5

C 13 MPa

Do 0.13 MPa

f 0.75

5 0.035

m 0.5

Ho 20

v 0.36

J/mol. K

GVIPS material constants (W/Kanthal):
UnitsConstant Value

n 1.5

ix 2.5E4 hr

m 1.5

13 0.5
R 7.0E-5 MPa/hr

H 12.6E4 MPa

Go 0.05

2.7

r I 1.0

kt 5.6 MPa
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Appendix 2: Modified material constants

GVIPS material constants for nonproportional test:
Constant Value Units

n 2.5

ix 8.1238E12 hr
m 3.0

p 2.5
R 7.0E-4 MPa/hr

H 2.0E4 MPa

Go 2.5

co 1.0

T! 1.0

kt 0.6823 MPa
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